Supervised Learning & Distance and Similarity measures

Question 1:

- a) As part of a study, objects are to be grouped meaningfully according to similarity criteria. The following objects were observed:
 - i. Berlin bars (regarding standardized, uncorrelated measurements of average number of visitors per week and time since opening)
 - ii. Distributions of two random variables X and Y (e.g. two normal distributions with different parameters)
 - iii. English surnames
 - iv. Boutiques in Munich (in terms of location/coordinates)
 - v. Ten bytes (1 byte = 8 bits) e.g. [10001010] vs. [11001010] vs. [00101010] vs.
 - vi. Exam solutions of two high school graduates (plagiarism detection)

Which distance and/or similarity measures would you propose to deal with these kinds of objects?

b) Is the squared Euclidean distance, defined as

$$D_{\text{Euk}}(x,y)^2 = \sum_{i=1}^p |x_i - y_i|^2$$

a metric? Prove your answer.

Question 2:

Consider the following subset from the roc_sim_dat.csv data set

(Source: http://static.lib.virginia.edu/statlab/materials/data/roc_sim_dat.csv):

You may assume that the probabilities were predicted by some logistic model.

- a) Write pseudo-code or the code of an R function to calculate the *false positive fraction* (FPF) and *true positive fraction* (TPF) from above data for a set of threshold values.
- b) Draw the receiver operating characteristic (ROC) for the following thresholds:

 $-\infty$; 0.115; 0.125; 0.145; 0.185; 0.220; 0.260; 0.325; ∞

predicted_prob_of_Yes	$actual_outcome$	
0.13	Yes	
0.16	No	
0.11	No	
0.12	No	
0.23	No	
0.11	0.11 No 0.29 Yes 0.13 No	
0.29		
0.13		
0.21	No	
0.36	No	

c) Calculate the *area under the curve* (AUC). What would you say about the model that produces the predicted probabilities based on the AUC value?

Question 3:

In this exercise, consider patients from a cardiologist's practice that are divided according to the risk of myocardial infarction (Y). Specifically, the assignment to *class* 1 does not indicates an increased risk, while the assignment to *class* 2 indicated an increased risk. Furthermore, the results of the electrocardiogram (X) are given, which are divided into good (G) and bad (S). The conditional distribution f(x|y) and the a priori probabilities for the respective class memberships $Y \in \{1, 2\}$ are given by the following table:

	good Electrocardiogram	bad Electrocardiogram	a priori-
	G	S	probabilities
$class \ 1$	0.95	0.05	π
class~2	0.10	0.90	$1-\pi$

- a) Determine the Bayesian classification as a function of the parameter π . If no clear assignment is possible, make an assignment to class 1.
- **b**) Determine the error rates ϵ_{12} and ϵ_{21} as well as ϵ for $\pi = 0.2$.
- c) What is the difference between Bayesian and ML classification? What would be the decision rule for ML classification?
- d) Next, assume that it is worse to assume a patient to be at risk than risk-free (and therefore not to start treatment), than to perform a further and unnecessary examination on a riskfree patient. We can take this fact into account by introducing costs. Which assignments result for $\pi = 0.2$ when additionally taking into account the following cost table

$$\begin{array}{c|c} c_{ij} & 1 & 2 \\ \hline 1 & 0 & 1 \\ 2 & 5 & 0 \\ \end{array}$$

Question 4:

Consider a two dimensional feature vector \boldsymbol{X} that is normally distributed in three classes. Specifically

with a priori probabilities p(1) = p(2) = p(3) = 1/3.

a) Write out the discriminant function for each class when using *linear discriminant analysis* (LDA) for a general Σ .

Next let the covariance matrix be equal to the identity matrix, i.e. $\Sigma = I$.

b) Calculate the specific dividing lines between the classes and sketch the areas in which the points classified to each class would have to lie.