
Multivariate Verfahren – Summer Semester 2024 Exercise sheet 1
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Probability theory and Linear Algebra

Question 1: Some probability basics

(a) How many different σ-algebras is it possible to define on the set Ω = {A,B,C}?
Specifically write down every possibility.

(b) Prove that the pdf of the Binomial distribution indeed qualifies as a probability function.

Hint : You may use the Binomial theorem, which states that

(a+ b)n =

n∑
i=0

(
n

i

)
aibn−i . (1)

(c) Consider the following function

F : R −→ R, x 7→


1, x ≥ d

1
3x

3 + 1
6x+ 1

2 , −d ≤ x ≤ d

0, x ≤ −d

for some d ∈ R>0.

(i) Determine a value for d so that F is a CDF.

(ii) Write down the corresponding probability (density) function and calculate P (X ∈ A)

for a random variable X with CDF F and

A =
{
{x ∈ R | x > 0} ∪ {x ∈ R | x ≤ −d}

}C
.

(d) Consider a test to detect a disease that 0.1% of the population have. The test is 99% effective

in detecting an infected person. However, the test gives a false positive result in 0.5% of cases.

If a person tests positive for the disease what is the probability that they actually have it?

Solution:

(a) There are 5 possibilities for a σ-algebra on Ω:

(i)
{
∅,Ω

}
(ii)

{
∅, {A}, {B,C},Ω

}
(iii)

{
∅, {B}, {A,C},Ω

}
(iv)

{
∅, {C}, {A,B},Ω

}
(v)

{
∅, {A}, {B}, {C}, {B,C}, {A,C}, {A,B},Ω

}
= P(Ω)

(b) Given that the probability function of the Binomial distribution is
(
n
x

)
px(1 − p)n−x with
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support {0, 1, . . . , n} ∀n ∈ N , this immediately follows from:

1 = (p+ 1− p)n =
n∑

x=0

(
n

x

)
px(1− p)n−x ∀n ∈ N .

(c) (i) We require that ∫ ∞

−∞
F ′(x)dx =

∫ d

−d
F ′(x)dx

!
= 1 ,

and, therefore,∫ ∞

−∞
F ′(x)dx = F (d)− F (−d)

=
1

3
d3 +

1

6
d+

1

2
− [

1

3
(−d)3 +

1

6
(−d) +

1

2
]

=
2

3
d3 +

1

3
d

!
= 1 .

It follows that d = 1.

(ii) The corresponding density is given by

f(x) =


0, x > 1

F ′(x) = x2 + 1
6 , −1 ≤ x ≤ 1

0, x ≤ −1.

Meanwhile, we have that

P (X ∈
{
{x ∈ R | x > 0} ∪ {x ∈ R | x ≤ −d}

}C
) = P (X ∈ {x ∈ R | x > 0}C ∩ {x ∈ R | x ≤ −d}C)

= P (X ∈ {x ∈ R | x ≤ 0} ∩ {x ∈ R | x > −d})

= P (X ∈]− d, 0]) = P (X ≤ 0)− P (X ≤ −d)

= F (0)− F (−d) =
1

2
.

(d) The first step in solving this problem is to recognize what we are trying to calculate and

what quantities we have been given in the question. We can introduce a Bernoulli random

variable and say that D = 1 when the person has the disease. We can then introduce a

second Bernoulli random variable T and say that T = 1 when a person gets a positive

test result. We then note that these two random variables are not independent. With

these symbols in place we can now state clearly what it we are trying to calculate. We

are trying to calculate the conditional probability P (D = 1|T = 1). In addition, the

question tells us that:

P (D = 1) = 0.001 P (T = 1|D = 1) = 0.990 P (T = 1|D = 0) = 0.005

From these quantities we can calculate the probability of getting a positive test result,

P (T = 1) using

P (T = 1) = P (T = 1|D = 1)P (D = 1) + P (T = 1|D = 0)P (D = 0)

= P (T = 1|D = 1)P (D = 1) + P (T = 1|D = 0)[1− P (D = 1)]

= 0.99× 0.1 + 0.005× (1− 0.001) = 0.005985
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We can now insert this result into Bayes theorem to get the desired conditional proba-

bility.

P (D = 1|T = 1) =
P (T = 1|D = 1)P (D = 1)

P (T = 1)
=

0.99× 0.001

0.005985
≈ 0.165 .

Question 2: Matrix rank and linear independence

(a) Calculate the rank of the following matrix:
4 −6 0

−6 0 1

0 9 −1

0 1 4


(b) Are the following vectors linearly independent?

v1 =


3

0

1

2

 ; v2 =


6

1

0

0

 ; v3 =


12

1

2

4

 ; v4 =


6

0

2

4

 ; v5 =


9

0

1

2


If they are not, find the largest number of linearly independent vectors among them.

(c) Prove that if a matrix A ∈ Rn×m is not square, then either the row vectors or the column

vectors are linearly dependent.

Solution:

(a) 
4 −6 0

−6 0 1

0 9 −1

0 1 4


R1·(−1)−R2−R3

=⇒


2 −3 0

−6 0 1

0 9 −1

0 1 4



R2+3R1
=⇒


2 −3 0

0 −9 1

0 9 −1

0 1 4



R4+R3 ; R5+ 1
9
R2

=⇒


2 −3 0

0 −9 1

0 0 0

0 0 37/9



R4+R5 ; R5−R5
=⇒


2 −3 0

0 −9 1

0 0 37/9

0 0 0


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Therefore, the rank of the original matrix is 3 .

(b) This question is equivalent to asking for the rank of the matrix

3 0 1 2

6 1 0 0

12 1 2 4

6 0 2 4

9 0 1 2


=⇒



3 0 1 2

0 1 −2 −4

0 1 −2 −4

0 0 0 0

0 0 −2 −4


=⇒



3 0 1 2

0 1 −2 −4

0 0 −2 −4

0 0 0 0

0 0 0 0


The rank of the matrix is 3. It follows that the maximum number of linearly independent

vectors is also 3. They are the ones that correspond to the non-zero rows of the final

matrix:

(3, 0, 1, 2)⊤; (6, 1, 0, 0)⊤; (9, 0, 1, 2)⊤ .

(c) The maximum number of linearly independent row vectors is the rank of A, while the

maximum number of linearly independent column vectors is the rank of A⊤. If n < m,

then rank(A)⊤ = rank(A) ≤ n < m. Therefore, the column vectors are linearly dependent.

Similarly, if m < n, then the row vectors are linearly dependent.

Question 3: Matrixdecomposition

Consider the following matrices:

AAA =

(
2 1

1 2

)
, BBB =

(
1 2

2 1

)
, CCC =

(
1 2

1 2

)
und DDD =


1 2 3

2 5 7

3 7 26

 .

You may assume it to be known that the matrix DDD is positive definite.

a) Determine the definitiveness of AAA, BBB and CCC.

b) Decompose the matrix AAA using Eigendecomposition.

c) Determine the entries of LLL in the Cholesky-decomposition DDD = LLLLLLT of DDD.

Solution:

a) Definiteness:

A =

(
2 1

1 2

)
characteristic polynomial:

det(A− λI) = det

(
2− λ 1

1 2− λ

)
= (2− λ)2 − 12

!
= 0

(2− λ)2 = 1

2− λ = ±1

⇒ λ1 = 1 λ2 = 3

⇒ A is positive definite, since all eigenvalues are greater than zero!
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B =

(
1 2

2 1

)
characteristic polynomial:

det(B − λI) = det

(
1− λ 2

2 1− λ

)
= (1− λ)2 − 22

!
= 0

(1− λ)2 = 4

1− λ = ±2

⇒ λ1 = 3 λ2 = −1

⇒ B is indefinite, since one eigenvalue is smaller and one greater than zero!

C =

(
1 2

1 2

)
C is not symmetric. Therefore, definiteness cannot be directly determined through ei-

genvalues. However, we can use the eigenvalues of the corresponding symmetric matrix!

Simply put: we keep the diagonal, but take the pairwise average over the elements of the

off-diagonal.

CS =
1

2

(
C +C⊤

)
.

CS =
1

2

[(
1 2

1 2

)
+

(
1 1

2 2

)]
=

(
1 1.5

1.5 2

)

characteristic polynomial:

det(CS − λI) = det

(
1− λ 1.5

1.5 2− λ

)
!
= 0

⇒ (1− λ)(2− λ)− 1.52

= λ2 − 3λ− 0.25
!
= 0

⇒ λ1/2 =
3±

√
10

2
λ1 ≈ −0.08 λ2 ≈ 3.08

⇒ C is indefinite, since one eigenvalue is smaller and one greater than zero!

b) Eigendecomposition:

A =

(
2 1

1 2

)
with eigenvalue λ1 = 1, λ2 = 3
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Calculating the eigenvectors:(
0

0

)
!
= (A− λ1I) · x =

(
1 1

1 1

)
·

(
x1

x2

)
=

(
x1 + x2

x1 + x2

)

⇒ x2 = −x1 ⇒ normed eigenvector:
√
1/2 ·

(
1

−1

)
(
0

0

)
!
= (A− λ2I) · x =

(
−1 1

1 −1

)
·

(
x1

x2

)
=

(
−x1 + x2

x1 +−x2

)

⇒ x2 = x1 ⇒ normed eigenvector:
√

1/2 ·

(
1

1

)

⇒ A =
√

1/2

(
1 1

−1 1

)
︸ ︷︷ ︸

P

·

(
1 0

0 3

)
︸ ︷︷ ︸
diag(λ1, λ2)

·
√

1/2

(
1 −1

1 1

)
︸ ︷︷ ︸

P T

c) Cholesky-decomposition:

D =


1 2 3

2 5 7

3 7 26

 =


l11 0 0

l21 l22 0

l31 l32 l33




l11 l21 l31

0 l22 l32

0 0 l33

 = LLT

Calculating the Cholesky decomposition:

lii = (dii −
i−1∑
k=1

lik
2)

1
2

lji =
1

lii
(dji −

i−1∑
k=1

ljklik)

Specifically:

l11 = (d11 −
1−1∑
k=1

l1k
2)

1
2 = (1− 0)

1
2 = 1

l21 =
1

l11
(d21 −

1−1∑
k=1

l2kl1k) =
d21
l11

=
2

1
= 2

l31 =
1

l11
(d31 −

1−1∑
k=1

l3kl1k) =
d31
l11

=
3

1
= 3

l22 = (d22 −
2−1∑
k=1

l2k
2)

1
2 = (5− 22)

1
2 = 1

l32 =
1

l22
(d32 −

2−1∑
k=1

l3kl2k) =
1

1
(7− 3 · 2) = 1
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l33 = (d33 −
3−1∑
k=1

l3k
2)

1
2 =

(
d33 − (l31

2 + l32
2)

1
2

)
= (26− 32 − 12)

1
2 = 16

1
2 = 4

=⇒ L =


1 0 0

2 1 0

3 1 4

 und D =


1 2 3

2 5 7

3 7 26

 =


1 0 0

2 1 0

3 1 4




1 2 3

0 1 1

0 0 4

 .
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