
Multivariate Verfahren – Summer Semester 2024 Exercise sheet 2

Hannah Schulz-Kümpel May 16th 2024

Multivariate distributions

Question 1: Data and distributional assumptions

(a) Let us assume that we are given data with all metric columns of the following form:

M1 M2 · · · Mm

1: x11 x12 · · · x1n

2: x21 x22 · · · x2n
...

...
...

. . .
...

n: xn1 xn2 · · · xnn

.

How would, i.e. as what mathematical objects and using which probabilistic assumptions,

would we model the elements of this data to then be able to make inferences about the

behaviour/characteristics of new row-wise observations, like [x(n+1)1, x(n+1)2, . . . , x(n+1)m]?

(b) Show that the arithmetic mean is an unbiased estimate of the expected value, given that

we are viewing the points we are averaging over as realizations of random variables whose

distributions all have the same expected value.

Do we additionally need to assume that the random variables of which we have realizations

are i.i.d.? Explain your answer.

(c) Given the setting of (a), consider the case m = 1, i.e. that we only have the data of column

M1, but are otherwise making the same modelling choices. Show that

σ̂2 =
1

n− 1

n∑
i=1

(
xi −

1

n

n∑
i=1

xi

)2

is an unbiased estimate for the variance of the distribution we are assuming.

Why are we looking only at the case of m = 1 here instead of considering the xis to be

vectors in Rm in the above equation?

Recap:

An estimate θ̂ for a fixed, “true” value θ0 is called unbiased, if the following holds:

E
[
θ̂
]
= θ0 .
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Solution:

(a) We assume that there are n i.i.d. copies of the random vector X =


M1

M2

...

Mm

 and write

X1,X2, . . . ,Xn
i.i.d.∼ D ,

where D is some probability distribution.

Then, we view the row [xi1, xi2, . . . , xim] as a realization of Xi.

Next we can make different choices about the assumption we make about D, for example

that it belongs to a known distribution family and we just need to estimate the parameters.

Either way, it is usually sensible to assume that E[Z],Cov(Z)ij < ∞ for Z ∼ D.

(b) Consider the random variable Z with E[Z] = µ and n random variables X1, . . . , Xn with

E[Xi] = µ ∀i ∈ {1, . . . , n}.

E

[
1

n

n∑
i=1

Xi

]
=

1

n
E

[
n∑

i=1

Xi

]
=

1

n

n∑
i=1

E [Xi]

=
n

n
E [Xi]

= µ = E[Z]
√

No, we do not have to make the i.i.d. assumption here. In fact, by the linearity of the

expected value, it is completely sufficient to assume that are random variables have the

same expectation, even if they follow different distributions!

(c) Consider the random variable Z with realizations in R and Z ∼ D and n random
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variables X1, . . . , Xn with realizations in R and X1, . . . , Xn
i.i.d.∼ D.

E
[
σ̂2
]
=E

 1

n− 1

n∑
i=1

Xi −
1

n

n∑
j=1

Xj

2 =
n

n− 1
E

Xi −
1

n

n∑
j=1

Xj

2
=

n

n− 1
E

X2
i − 2Xi ·

1

n

n∑
j=1

Xj +

 1

n

n∑
j=1

Xj

2
=

n

n− 1
E

X2
i − 2Xi ·

1

n

n∑
j=1

Xj +
1

n2

 n∑
j=1

X2
j +

n∑
k=1

n∑
l=1

XkXl1{j ̸=k}


=

n

n− 1

(
E
[
X2

i

]
− E

2Xi ·
1

n

n∑
j=1

Xj

+ E

 1

n2

 n∑
j=1

X2
j +

n∑
k=1

n∑
l=1

XkXl1{j ̸=k}

)

=
n

n− 1

(
E
[
X2

i

]
− 2

n
E
[
X2

i

]
− 2(n− 1)

n
E [Xi]

2 +
1

n
E
[
X2

i

]
+

n(n− 1)

n
E [Xi]

2

)

=
n

n− 1

(
(n− 1)

n
E
[
X2

i

]
− (n− 1)

n
E [Xi]

2

)
=E

[
X2

i

]
− E [Xi]

2

=Var(Xi) = Var(Z)
√

We are only looking at the case ofm = 1, because there is no one variance value for random

vectors. Instead, they have covariance matrices. The diagonal entries of this covariance

matrices will be the variances of the elements of the random vector.

Question 2: Eigenvalue decomposition

Consider the random vector x = (x1,x2)
T with covariance

Σx =

(
2 2

2 5

)

a) Determine the eigenvalues λ1 and λ2 and the (normalized) eigenvectors of the matrix Σx.

b) Use the result of (a) to determine a random vector y = (y1,y2)
T , whose components y1

and y2 are linear combinations of x1 and x2 and for which additionally holds that

Cov(y) = Λ =

(
λ1 0

0 λ2

)
.

Solution:

a)

Σx =

(
2 2

2 5

)
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The characteristic polynomial is given by:

det(Σx − λI) = det

(
2− λ 2

2 5− λ

)
= (2− λ)(5− λ)− 4

!
= 0

⇒ λ2 − 7λ+ 6 = (λ− 1)(λ− 6)
!
= 0

⇒ λ1 = 1, λ2 = 6

As covariance matrix of x = (x1, x2)
T , Σx is covariance matrix, since Σx is

(i) symmetric

(ii) positive definite.

Calculate the eigenvalues:

(Σx − λ1I) · v =

(
1 2

2 4

)
·

(
v1

v2

)
=

(
v1 + 2v2

2v1 + 4v2

)
!
=

(
0

0

)

⇒ set v2 = 1 ⇒ v1 = −2

length of v :
√

(−2)2 + 12 =
√
5

⇒ ṽ =
1√
5

(
−2

1

)

(Σx − λ2I) ·w =

(
−4 2

2 −1

)
·

(
w1

w2

)
=

(
−4w1 + 2w2

2w1 − 1w2

)
!
=

(
0

0

)

⇒ set w1 = 1 ⇒ w2 = 2

length of w :
√

12 + 22 =
√
5

⇒ w̃ =
1√
5

(
1

2

)

Let’s check:

(1) Orthogonality:

< ṽ, w̃ >= − 2√
5

1√
5
+

1√
5

2√
5
= 0

√

(2) Eigendecomposition:

PΛP T =
1√
5

(
−2 1

1 2

)
·

(
1 0

0 6

)
· 1√

5

(
−2 1

1 2

)
(NR)
=

(
2 2

2 5

)
= Σx

√
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b)

Σy
!
=

(
1 0

0 6

)
= Λ = P TΣxP

= P⊤Cov(x)P = P⊤E
[
(x− E[x])(x− E[x])⊤

]
P

= E
[
P⊤(x− E[x])(x− E[x])⊤P

]
= E

[
P⊤(x− E[x])(x− E[x])⊤(P⊤)⊤

]
= E

[
P⊤(x− E[x])(P⊤(x− E[x]))⊤

]
= E

[
(P⊤x− E[P⊤x])(P⊤x− E[P⊤x])⊤

]
= Cov(P⊤x)

⇒ define y = P Tx =
1√
5

(
−2 1

1 2

)
·

(
x1

x2

)
=

1√
5

(
−2x1 + x2

x1 + 2x2

)

Note: y1 and y2 are coordinates of x with respect to the basis of the eigenvectors ṽ and

w̃ of Σx (see the following plot).

Question 3: Multivariate normal distribution

Let x = (x1, . . . ,xp)
T be a p-dimensional multivariate-normal distributed random vector. The

corresponding density is given by

f(x) =
1√

(2π)p|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

where µ denotes the expected value E[x] and Σ the covariance Cov(x).

a) Write out the form of this density for the the case p = 2, using the parameters σ2
i = var(xi),

i = 1, 2, and ρ = cov(x1,x2)
σ1σ2

. Conclude from this that x1 and x2 are independent if they are

5



uncorrelated.

b) Plot the density for µ = 0, σ1 = 1, σ2 = 3 and different values of ρ using R. (Tip: The

function persp in combination with the function manipulate from the package of the same

name is well suited for this).

Recap:

Calculation of the inverse of a matrix:

A =

(
a11 a12

a21 a22

)
⇒ A−1 = 1

|A|

(
a22 −a12

−a21 a11

)
︸ ︷︷ ︸

Adj(A)

Calculation of the quadratic form:

xTAx = (x1 x2)

(
a11 a12

a21 a22

)(
x1

x2

)
= x21a11 + x1x2(a12 + a21) + x22a22

Solution:

Here, we have: p = 2, σ2
1 = var (x1), σ

2
2 = var (x2), Cov(x1, x2) = ρσ1σ2

⇒ Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
(1) The determinant is given by:

det(Σ) = |Σ| = σ2
1σ

2
2 − ρ2σ2

1σ
2
2 = σ2

1σ
2
2(1− ρ2)

(2) The inverse is given by:

Σ−1 =
1

σ2
1σ

2
2(1− ρ2)

(
σ2
2 −ρσ1σ2

−ρσ1σ2 σ2
1

)
=

1

1− ρ2

 1
σ2
1

− ρ
σ1σ2

− ρ
σ1σ2

1
σ2
2


It, therefore, follows that:

f(x) =
1

2πσ1σ2
√
1− ρ2

exp

{
− 1

2(1− ρ2)

[
(x1 − µ1)

2

σ2
1

− 2ρ
(x1 − µ1)(x2 − µ2)

σ1σ2
+

(x2 − µ2)
2

σ2
2

]}
Let us now assume that x1 and x2 are uncorrelated ⇒ ρ = 0

ρ=0
=⇒ f(x) =

1

2πσ1σ2
exp

{
−1

2

[(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2
]}

=
1√
2πσ1

exp

{
−1

2

(
x1 − µ1

σ1

)2
}

︸ ︷︷ ︸
=fx1 (x1)

· 1√
2πσ2

exp

{
−1

2

(
x2 − µ2

σ2

)2
}

︸ ︷︷ ︸
=fx2 (x2)

b) See R-Code.
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Question 4: Determining marginal distributions

Consider the random variable z = (y,x)T ∼ Nq+p(µ,Σ), with

µ =

(
µy

µx

)
, Σ =

(
Σy Σyx

Σxy Σx

)
.

Derive the marginal distributions for the component vectors y and x.

Recap:

All random vectors that result from linear transformations of normally distributed random vec-

tors are in turn normally distributed. More specifically, the following applies to a p-dimensional

random vector:

w ∼ Np(µ, Σ) =⇒ A︸︷︷︸
∈Rq×p

w + b︸︷︷︸
∈Rq×1

∼ Nq(Aµ+ b, AΣAT ) mit q = rg(A) ≤ p

Solution:

z =

(
y

x

)
∼ Nq+p

((
µy

µx

)
,

(
Σy Σyx

Σxy Σx

))
Distribution of y:

Define Ay = (Iq 0q×p) =


1 0 0 0 0

0
. . . 0

. . .

0 0 1 0 0︸ ︷︷ ︸
q

︸ ︷︷ ︸
p


⇒ Ayz = Iqy + 0q×px = y

y ∼ Nq

(
Ay

(
µy

µx

)
, Ay

(
Σy Σyx

Σxy Σx

)
AT

y

)

⇒ Ay

(
µy

µx

)
= Iqµy + 0q×pµx = µy

AyΣAT
y = (Iq 0q×p)

(
Σy Σyx

Σxy Σx

)(
Iq

0p×q

)

= (Σy + 0q×pΣxy , Σyx + 0q×pΣx)

(
Iq

0p×q

)
= Σy + 0q×pΣyx

⇒ y ∼ Nq(µy, Σy)

Distribution of x:

Define Ax = (0p×q Ip)
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And the rest follows analogously:

⇒ x ∼ Np(µx, Σx)
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