
Multivariate Verfahren – Summer Semester 2024 Exercise sheet 3

Hannah Schulz-Kümpel June 6th 2024

Supervised Learning & Distance and Similarity

measures

Question 1:

a) As part of a study, objects are to be grouped meaningfully according to similarity criteria.

The following objects were observed:

i. Berlin bars (regarding standardized, uncorrelated measurements of average number

of visitors per week and time since opening)

ii. Distributions of two random variables X and Y (e.g. two normal distributions with

different parameters)

iii. English surnames

iv. Boutiques in Munich (in terms of location/coordinates)

v. Ten bytes (1 byte = 8 bits) e.g. [10001010] vs. [11001010] vs. [00101010] vs. ....

vi. Exam solutions of two high school graduates (plagiarism detection)

Which distance and/or similarity measures would you propose to deal with these kinds of

objects?

b) Is the squared Euclidean distance, defined as

DEuk(x, y)
2 =

p∑
i=1

|xi − yi|2

a metric? Prove your answer.

Solution:

a) i. Euclidean distance. This is a good alternative when standardized, uncorrelated

values of metric variables are compared with each other.

ii. Wasserstein metric. This divergence can be used to compare probability (density)

functions. However, it is not a metric because it is not symmetrical.

iii. Levenshtein distance. The most morphologically similar first names can be grou-

ped together in this way.

iv. Manhattan distance. Due to the block structure, the Manhattan distance is

generally more realistic than the Euclidean distance in such cases.

v. Hamming distance. This distance is suitable for measuring the difference between

1



character strings (often binary in the application).

vi. Cosine distance. If the content is of interest, for example, the proportion of

words in each exam can be compared using cosine similarity; if they are very

similar, this could indicate a case of plagiarism

b) (a) Positive definiteness:

DEuk(x, y)
2 ≥ 0 ✓

and d(x, y) = 0 ⇔ x = y?

Consider x = y. Then:

(
x1

x2

)
=

(
y1

y2

)
⇒ x1 = y1 ∧ x2 = y2

DEuk(x, y)
2 = |0|+ |0| = 0 ✓

Next, consider d(x, y) = 0. Then |x1 − y1| = 0∧|x2 − y2| = 0 ⇒ x1−y1 = 0∧x2−y2 = 0

⇒ x1 = y1 ∧ x2 = y2

⇒ x = y ✓

(b) Symmetry:

d(x, y) = d(y, x)

d(x, y) = |x1 − y1|2 + |x2 − y2|2

= |− (y1 − x1)|2 + |− (y2 − x2)|2

| − a| = |a|

⇒ d(x, y) = |y1 − x1|2 + |y2 − x2|2

= d(y, x) ✓

(c) Triangle inequality:

d(x, y) ≤ d(x, z) + d (z, y)

Consider an arbitrary x ∈ Rn\{0} and set y = 3x and z = 2x. Then

d(x, y)2 =
n∑

i=1

(xi − 3xi)
2 = 4

n∑
i=1

x2i

and

d(x, z)2 + d(z, y)2 =

n∑
i=1

x2i +

n∑
i=1

x2i = 2

n∑
i=1

x2i

Since 4
∑n

i=1 x
2
i > 2

∑n
i=1 x

2
i , we have found a counterexample in which the triangle

inequality does not apply.

⇒ Therefore, the squared Euclidean distance isn’t a metric.

Question 2:

Consider the following subset from the roc sim dat.csv data set
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(Source: http://static.lib.virginia.edu/statlab/materials/data/roc_sim_dat.csv):

predicted prob of Yes actual outcome

0.13 Yes

0.16 No

0.11 No

0.12 No

0.23 No

0.11 No

0.29 Yes

0.13 No

0.21 No

0.36 No

You may assume that the probabilities were predicted by some logistic model.

a) Write pseudo-code or the code of an R function to calculate the false positive fraction

(FPF) and true positive fraction (TPF) from above data for a set of threshold values.

b) Draw the receiver operating characteristic (ROC) for the following thresholds:

−∞ ; 0.115 ; 0.125 ; 0.145 ; 0.185 ; 0.220 ; 0.260 ; 0.325 ; ∞

c) Calculate the area under the curve (AUC). What would you say about the model that

produces the predicted probabilities based on the AUC value?

Solution:

a) The following R function returns a data frame with FPF in the first column and TPF

in the second:

get_fpf_tpf <- function(predicted_probs,actual_outcomes,thresholds){

output <- data.frame(FPF=numeric(length(thresholds)),

TPF=numeric(length(thresholds)))

for(i in 1:length(thresholds)){

predicted_classes <- ifelse(predicted_probs >= thresholds[i], 1, 0)

TP <- sum(predicted_classes == 1 & actual_outcomes == "Yes")

FP <- sum(predicted_classes == 1 & actual_outcomes == "No")

TN <- sum(predicted_classes == 0 & actual_outcomes == "No")

FN <- sum(predicted_classes == 0 & actual_outcomes == "Yes")

output$FPF[i] <- FP / (FP + TN)

output$TPF[i] <- TP / (TP + FN)

}

return(output)

}
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b)

c) The AUC gives the area under the curve, i.e. the integral under the ROC on [0, 1].

In this case, we have

AUC = (0.375 · 0.5) + 0.5− (0.125 · 0.25) = 0.65625 .

This is relatively close to 0.5, so the model does not seem to be optimal.

Question 3:

In this exercise, consider patients from a cardiologist’s practice that are divided according to

the risk of myocardial infarction (Y ). Specifically, the assignment to class 1 does not indicates

an increased risk, while the assignment to class 2 indicated an increased risk. Furthermore, the

results of the electrocardiogram (X) are given, which are divided into good (G) and bad (S).

The conditional distribution f(x|y) and the a priori probabilities for the respective class mem-

berships Y ∈ {1, 2} are given by the following table:

good Electrocardiogram bad Electrocardiogram a priori-

G S probabilities

class 1 0.95 0.05 π

class 2 0.10 0.90 1− π

a) Determine the Bayesian classification as a function of the parameter π. If no clear assi-

gnment is possible, make an assignment to class 1.

b) Determine the error rates ϵ12 and ϵ21 as well as ϵ for π = 0.2.

c) What is the difference between Bayesian and ML classification? What would be the decision

rule for ML classification?

d) Next, assume that it is worse to assume a patient to be at risk than risk-free (and therefore
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not to start treatment), than to perform a further and unnecessary examination on a risk-

free patient. We can take this fact into account by introducing costs. Which assignments

result for π = 0.2 when additionally taking into account the following cost table

cij 1 2

1 0 1

2 5 0

Recap:

• Basic problem of discriminant analysis:

With the help of an observed feature vector x ∈ Rp, determine the class class Y ∈ {1, . . . , k}
from which the observation originates

• The following quantities play a role here:

fX|Y (x|y)=̂f(x|y) sampling distribution (known, at least
as an estimate)

P (Y = y)=̂p(y) a priori-probability (known, at least
as an estimate)

f(x) =
∑K

y=1 f(x|y)p(y) mixture distribution (can be calculated from
the two previous items)

P (Y = y|X = x)=̂p(y|x) a posteriori-probability (unknown)

• What we want: Classification rule that assigns an observed feature vector x to a class

r (r ∈ {1, . . . , k})

• Approach for Bayesian classification:

δ(X = x) = r ⇐⇒ P (Y = r|X = x) = max
i=1,...,k

P (Y = i|X = x),

i.e. assign the observation to the class for which the observed feature vector has the highest

posteriori probability.

• Problem: P (Y = r|X = x) is unknown!

• With the help of Bayes’ theorem, though, the following relation can be shown

P (Y = i|X = x) = p(i|x) = f(i,x)

f(x)
=

f(x|i)p(i)
f(x)

∝ f(x|i)p(i)

• Which leads us to the Bayes rule:

δ(X = x) = r ⇐⇒ f(x|r)p(r) = max
i=1,...,k

f(x|i)p(i).
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Solution:

a) For X ∈ {G,S}, Y ∈ {1, 2}, we start by calculating the following probabilities:

P (X = G|Y = 1)P (Y = 1) = 0.95π

P (X = G|Y = 2)P (Y = 2) = 0.1(1− π)

P (X = S|Y = 1)P (Y = 1) = 0.05π

P (X = S|Y = 2)P (Y = 2) = 0.9(1− π).

The decision-rule for X = G is

δ(X = G) = r ⇔ P (X = G|Y = r)P (Y = r) = max
i

P (X = G|Y = i)P (Y = i).

In our case we make the decision Y = 1 – in case of equality Y = 1 should also be chosen

– if

0.95π ≥ 0.1(1− π)

⇔ 0.95π ≥ 0.1− 0.1π

⇔ 1.05π ≥ 0.1

⇔ π ≥ 2

21
≈ 0.0952.

As a result, the classification rule for X = G is given by

δ(X = G) =

{
1, π ≥ 2/21,

2, π < 2/21

Therefore, we make the decision Y = 1 when X = S exactly when

0.05π ≥ 0.9(1− π)

⇔ 0.05π ≥ 0.9− 0.9π

⇔ 0.95π ≥ 0.9

⇔ π ≥ 18

19
≈ 0.9474

and the decision rule for X = S is given by

δ(X = S) =

{
1, π ≥ 18/19,

2, π < 18/19

b) The definition of individual error rates is

ϵrs = P (δ(X) = s|Y = r).
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In our case, we are looking for ϵ12 and ϵ21 as well as ϵ for π = 0.2. For ϵ12 we get

ϵ12 = P (δ(X) = 2|Y = 1) =
P (δ(X) = 2, Y = 1)

P (Y = 1)

=
P (δ(X) = 2, Y = 1, X = G) + P (δ(X) = 2, Y = 1, X = S)

P (Y = 1)

=
P (δ(X) = 2|Y = 1, X = G)P (Y = 1, X = G) + P (δ(X) = 2|Y = 1, X = S)P (Y = 1, X = S)

P (Y = 1)

=
P (δ(X) = 2|Y = 1, X = G)P (X = G|Y = 1)P (Y = 1)

P (Y = 1)

+
P (δ(X) = 2|Y = 1, X = S)P (X = S|Y = 1)P (Y = 1)

P (Y = 1)

= P (δ(X) = 2|Y = 1, X = G)P (X = G|Y = 1) + P (δ(X) = 2|Y = 1, X = S)P (X = S|Y = 1)

= P (δ(X = G) = 2|Y = 1)P (X = G|Y = 1) + P (δ(X = S) = 2|Y = 1)P (X = S|Y = 1)

= 0 · 0.95 + 1 · 0.05 = 0.05.

Analogously, we get

ϵ21 = P (δ(X = G) = 1|Y = 2)P (X = G|Y = 2) + P (δ(X = S) = 1|Y = 2)P (X = S|Y = 2)

= 1 · 0.1 + 0 · 0.9 = 0.1.

For the total error rate, we get

ϵ =
2∑

r=1

∑
s ̸=r

ϵrsP (Y = r) = ϵ12P (Y = 1) + ϵ21P (Y = 2)

= 0.05 · π + 0.1 · (1− π)

= 0.05π + 0.1− 0.1π

= 0.1− 0.05π

π=0.2
= 0.09.

c) ML classification is a special case of Bayesian classification in which the priori probabi-

lities are all equal, i.e. p(1) = p(2) = . . . = p(g) = 1/g.

Since all priori probabilities are equal, these can be neglected with regard to the discri-

minant function, so that only the conditional probabilities of X given Y play a role:

P (X = G|Y = 1) = 0.95

P (X = G|Y = 2) = 0.1

P (X = S|Y = 1) = 0.05

P (X = S|Y = 2) = 0.9.

Here, it holds that:

P (X = G|Y = 1) > P (X = G|Y = 2)

P (X = S|Y = 1) < P (X = S|Y = 2).
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Therefore, the decision-rule w.r.t. X is

δ(X = G) = 1 , δ(X = S) = 2.

d) Cost-optimal Bayes classification:

δ(x) = r ⇔
k∑

i=1

p(i|x) · cir = min
j

k∑
i=1

p(i|x) · cij

where cij denotes the cost when an object that belongs to class i, but gets classified to

class j.

Here: c12 = 1, c21 = 5, c11 = c22 = 0

mit π = 0, 2:

• X = G:

min{ P (Y = 1|X = G) · c11 + P (Y = 2|X = G) · c21;

P (Y = 1|X = G) · c12 + P (Y = 2|X = G) · c22}

= min{P (X = G|Y = 2)P (Y = 2) · c21;

P (X = G|Y = 1)P (Y = 1) · c12}

= min{0.1 · 0.8 · 5; 0.95 · 0.2 · 1}

= min{0.4; 0.19} = 0.19

⇒ δ(G) = 2

• X = S:

min{ P (Y = 1|X = S) · c11 + P (Y = 2|X = S) · c21;

P (Y = 1|X = S) · c12 + P (Y = 2|X = S) · c22}

= min{P (X = S|Y = 2)P (Y = 2) · c21;

P (X = S|Y = 1)P (Y = 1) · c12}

= min{0.9 · 0.8 · 5; 0.05 · 0.2 · 1}

= min{3.6; 0.01} = 0.01

⇒ δ(S) = 2

⇒ patients are always considered to have an increased risk of heart attack.

Note: Bayes and ML classification are special cases of cost-optimal classification:

• Bayes: cij = c

• ML: cij =
c

p(i) , i ̸= j

Question 4:

Consider a two dimensional feature vector X that is normally distributed in three classes.
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Specifically

X |Y = 1 ∼ N2(µ1,Σ) with µ1 = (4, 12)⊤,

X |Y = 2 ∼ N2(µ2,Σ) with µ2 = (12, 8)⊤,

X |Y = 3 ∼ N2(µ3,Σ) with µ3 = (4, 8)⊤.

with a priori probabilities p(1) = p(2) = p(3) = 1/3.

a) Write out the discriminant function for each class when using linear discriminant analysis

(LDA) for a general Σ.

Next let the covariance matrix be equal to the identity matrix, i.e. Σ = I.

b) Calculate the specific dividing lines between the classes and sketch the areas in which the

points classified to each class would have to lie.

Solution:

a) We use the following discriminant function (important: identical covariance matrices in

all classes are assumed!)

dr(x) = log(f(x|r)) + log(p(r))

= log

(
1

(2π)p/2|Σ|1/2

)
− 1

2
(x− µr)

⊤Σ−1(x− µr) + log(p(r)).

Since the first term on the right-hand side is identical for all classes, we can neglect it in

the discriminant function and get

dr(x) = −1

2
(x− µr)

⊤Σ−1(x− µr) + log(p(r)).

Multiplication results in

dr(x) = −1

2
(x⊤Σ−1x− 2µ⊤

r Σ
−1x+ µ⊤

r Σ
−1µr) + log(p(r)).

The first term is again identical for all classes and can be neglected in the following. The

same applies to log(p(r)) if identical a priori probabilities are assumed.

This gives us the following discriminant function

dr(x) = µ⊤
r Σ

−1x− 1

2
µ⊤
r Σ

−1µr (1)

b) For Σ = I, it now holds that

dr(x) = µ⊤
r x− 1

2
µ⊤
r µr. (2)

We get

d1(x) =
[
4 12

] [ x1

x2

]
− 1

2

[
4 12

] [ 4

12

]
= 4x1 + 12x2 − 80

9



d2(x) =
[
12 8

] [ x1

x2

]
− 1

2

[
12 8

] [ 12

8

]
= 12x1 + 8x2 − 104

d3(x) =
[
4 8

] [ x1

x2

]
− 1

2

[
4 8

] [ 4

8

]
= 4x1 + 8x2 − 40.

We decide in favor of category i and against j, if di(x) ≥ dj(x) applies. For categories 1

and 2 we get

4x1 + 12x2 − 80 ≥ 12x1 + 8x2 − 104

⇐⇒ 4x2 ≥ 8x1 − 24

⇐⇒ x2 ≥ 2x1 − 6.

For categories 1 and 3 we get

4x1 + 12x2 − 80 ≥ 4x1 + 8x2 − 40

⇐⇒ 4x2 ≥ 40

⇐⇒ x2 ≥ 10.

For categories 2 and 3 we get

12x1 + 8x2 − 104 ≥ 4x1 + 8x2 − 40

⇐⇒ 0 ≥ −8x1 + 64

⇐⇒ x1 ≥ 8.
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