
Multivariate Verfahren – Summer Semester 2024 Exercise sheet 4

Hannah Schulz-Kümpel June 20th 2024

Unsupervised Learning: Clustering

Question 1:

In the plot below, which of the following options could have produced each clustering (multi-

ple answers are possible): K-means, Single linkage (hierarchical clustering), Gaussian Mixture

Models.

Solution:

Plot A: K-means, Single linkage & Gaussian Mixture Models

Plot B: Gaussian Mixture Models

Plot C: Single linkage & Gaussian Mixture Models

Plot D: Single linkage

Question 2: Hierarchical Clustering

For four branches of a supermarket chain, the following values are obtained for the characteristics

turnover and sales area, each measured in suitable units:

branch 1 2 3 4

turnover 8 5 10 4

sales area 24 22 25 21
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Using the squared Euclidean distance as the distance between individual objects both times,

a) Perform a hierarchical clustering with the Single Linkage method

b) Perform a hierarchical clustering with the Zentroid method.

c) Draw the complete dendrograms for both methods.

Recap - Hierarchical Clustering:

• Given: n points x1, . . . , xn

• Clustering: Forming suitable clusters / classes / groups

• Two possible approaches:

- agglomerative: subclasses are successively combined

- divisive: Start with all objects in 1 cluster, which is successively split up

• Agglomerative procedure: In the first step, all objects form their own cluster. Combine

clusters based on distance dimensions until all objects are combined in one cluster.

• dij = d(xi,xj)=̂ distance between points i an j

• D(Ci, Cj)=̂ Distance between clusters Ci and Cj .

• Cν is defined as the partition in the ν-th step.

• hν=̂ Distance between the two clusters merged in step ν (to be entered in the dendrogram).

Solution:

a) Single-Linkage with squared euclidean distance dij = ||xi − xj ||2: In step ν, we merge

those clusters Ci, Cj ∈ C(ν−1) for which the following applies:

D(Ci, Cj) = (hν =)min
l ̸=k

D(Cl, Ck) = min
l ̸=k

{
min

r∈Cl, s∈Ck

{drs}
}

(1) Distance-matrix of partition C(0) = {{1}, {2}, {3}, {4}}:

e.g.. d12 =

∣∣∣∣∣
∣∣∣∣∣
(

8

24

)
−

(
5

22

)∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣
(
3

2

)∣∣∣∣∣
∣∣∣∣∣
2

= 32 + 22 = 13

1 2 3 4

1 | 0 13 5 25

2 | 0 34 2

3 | 0 52

4 | 0

⇒ h1 = min
l ̸=k

{
min

r∈Cl, s∈Ck

{drs}
}

= 2=̂D({2}, {4})

⇒ Step 1: Merge {2} and {4}
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⇒ C(1) = {{1}, {2, 4}, {3}}
(2) Distance-matrix of partition C(1):

1 2, 4 3

1 | 0 13 5

2, 4 | 0 34

3 | 0

⇒ h2 = min
l ̸=k

{
min

r∈Cl, s∈Ck

{drs}
}

= 5=̂D({1}, {3})

⇒ Step 2: Merge {1} and {3}
⇒ C(2) = {{1, 3}, {2, 4}}

(3) Distance between {1, 3} and {2, 4}:
h3 = min

r∈{1,3}, s∈{2,4}
{drs} = 13=̂D({1, 3}, {2, 4})

⇒ Step 3: Merge {1, 3} and {2, 4}
⇒ C(3) = {{1, 2, 3, 4}}

b) Zentroid-procedure with squared euclidean distance: In step ν, we merge those clusters

Ci, Cj ∈ C(ν−1) for which the following applies:

D(Ci, Cj) = (hν =)min
l ̸=k

D(Cl, Ck) = min
l ̸=k

||x̄l − x̄k||2 , where x̄r =
1

nr

∑
s∈Cr

xs

(1) Distance-matrix of partition C(0) = {{1}, {2}, {3}, {4}}:

1 2 3 4

1 | 0 13 5 25

2 | 0 34 2

3 | 0 52

4 | 0

⇒ h1 = min
l ̸=k

||x̄l − x̄k||2 = 2=̂D({2}, {4})

⇒ Step 1: Merge {2} and {4}
⇒ C(1) = {{1}, {2, 4}, {3}}
Cluster centroids:

x̄{2,4} =
1

2

((
5

22

)
+

(
4

21

))
=

(
4, 5

21, 5

)

⇒ X̄(1) =

(
8 4, 5 10

24 21, 5 25

)
{1} {2, 4} {3}

(2) Distance-matrix of partition C(1):

e.g. D({1}, {2, 4}) =

∣∣∣∣∣
∣∣∣∣∣
(

8

24

)
−

(
4, 5

21, 5

)∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣
(
3, 5

2, 5

)∣∣∣∣∣
∣∣∣∣∣
2

= 3, 52 + 2, 52 = 18, 5

1 2, 4 3

1 | 0 18, 5 5

2, 4 | 0 42, 5

3 | 0

⇒ h2 = min
l ̸=k

||x̄l − x̄k||2 = 5=̂D({1}, {3})
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⇒ Step 2: Merge {1} and {3}
⇒ C(2) = {{1, 3}, {2, 4}}
Cluster centroids:

⇒ X̄(2) =

(
9 4, 5

24, 5 21, 5

)
{1, 3} {2, 4}

(3) Distance between {1, 3} and {2, 4}:
h3 = ||x̄{1,3} − x̄{2,4}||2 = 4, 52 + 32 = 29, 25=̂D({1, 3}, {2, 4})
⇒ Step 3: Merge {1, 3} and {2, 4}
⇒ C(3) = {{1, 2, 3, 4}}

c) The dendograms resulting from Single-Linkage and Zentroid procedures, respectively,

are given by the following:
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Question 3:

a) For a set of points (xi)
n
i=1 in Rm, show that the arithmetic mean µ̂ = 1

n

∑n
i=1 xi is the

solution to the optimization problem

µ̂ = argmin
µ∈Rm

n∑
i=1

∥xi − µ∥2

I.e. for a set of points, their mean can be characterized as the point which is, on average,

closest to all the other points with respect to the squared euclidean distance.
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b) Consider the following six points in R2:

x1 =

(
0

0

)
; x2 =

(
0

1

)
; x3 =

(
−1

2

)
; x4 =

(
2

0

)
; x5 =

(
3

0

)
; x6 =

(
4

−1

)
.

Use Lloyd’s algorithm and “random” initialization {x1;x6} to perform both k-means and

k-medoids (also with squared euclidean distance) clustering for K = 2.

Solution:

a) This immediately follows from the lecture slide’s lemma in the subsection “Non-

probabilistic methods” of chapter 7.1, whereby

n∑
i=1

∥xi − z∥2 ≥
n∑

i=1

∥xi − µ̂∥2 ∀z ∈ Rm

in this setting.

b) For both k-means and k-medoids, we start by computing the squared euclidean distance

between all points:

x1 x2 x3 x4 x5 x6

x1 0 1 5 4 9 17

x2 1 0 2 5 10 20

x3 5 2 0 12 20 34

x4 4 5 12 0 1 5

x5 9 10 20 1 0 2

x6 17 20 34 5 2 0

This also gives us the following distances between the initialization points and all others:

x1 x2 x3 x4 x5 x6

µ1 = x1 0 1 5 4 9 17

µ2 = x6 17 20 34 5 2 0

• Then, for k-means:

Iteration 1: Looking at rows of the distance matrix corresponding to the centers

x1 x2 x3 x4 x5 x6

µ1 = x1 0 1 5 4 9 17

µ2 = x6 17 20 34 5 2 0

Then the partitions are P1 = {x1, x2, x3, x4} and P2 = {x5, x6}. To find the new

cluster centers, we have to compute the means:

µ′
1 =

1

|P1|
∑
x∈P1

=
1

4

((
0

0

)
+

(
0

1

)
+

(
−1

2

)
+

(
2

0

))
=

1

4

(
1

3

)
µ′
2 =

1

|P2|
∑
x∈P2

=
1

2

((
3

0

)
+

(
4

−1

))
=

1

2

(
7

−1

)
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Iteration 2: We compute the squared euclidean distances to the new cluster cen-

ters:
x1 x2 x3 x4 x5 x6

µ1 0.625 0.125 3.125 3.625 8.125 17.125

µ2 12.500 14.500 26.500 2.500 0.500 0.500

Then the partitions are P1 = {x1, x2, x3} and P2 = {x4, x5, x6}. To find the new

cluster centers, we have to compute the means:

µ′
1 =

1

|P1|
∑
x∈P1

=
1

3

((
0

0

)
+

(
0

1

)
+

(
−1

2

))
=

1

3

(
−1

3

)
µ′
2 =

1

|P2|
∑
x∈P2

=
1

3

((
2

0

)
+

(
3

0

)
+

(
4

−1

))
=

1

3

(
9

−1

)

Iteration 3: We compute the squared euclidean distances to the new cluster cen-

ters:
x1 x2 x3 x4 x5 x6

µ1 1.111 0.111 1.444 6.444 12.111 22.777

µ2 9.111 10.777 21.444 1.111 0.111 1.444

Then the partitions are P1 = {x1, x2, x3} and P2 = {x4, x5, x6}. As these are the

same as in the previous iteration, the algorithm terminates.

• and for k-medoids:

Iteration 1: The partitions are P1 = {x1, x2, x3, x4} and P2 = {x5, x6}. To find

the new cluster centers, we sum the rows of the following sub-matrices of squared

euclidean distances:
x1 x2 x3 x4 Σ

x1 0 1 5 4 10

x2 1 0 2 5 8

x3 5 2 0 12 19

x4 4 5 12 0 21

and

x5 x6 Σ

x5 0 2 2

x6 2 0 2

From this, we get that µ
(1)
1 = x2 and µ

(1)
2 = x5 or µ

(1)
2 = x6 – we choose the

former, i.e. µ
(1)
2 = x5.

Iteration 2: Looking at rows of the distance matrix corresponding to the centers

x1 x2 x3 x4 x5 x6

µ1 = x2 1 0 2 5 10 20

µ2 = x5 9 10 20 1 0 2

Then the partitions are P1 = {x1, x2, x3} and P2 = {x4, x5, x6}. To find the new

cluster centers, we sum the rows of the corresponding subtables:
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x1 x2 x3 Σ

x1 0 1 5 6

x2 1 0 2 3

x3 5 2 0 7

⇝ µ′
1 = x2

x4 x5 x6 Σ

x4 0 1 5 6

x5 1 0 2 3

x6 5 2 0 7

⇝ µ′
2 = x5

The cluster centers are the same as before, so the algorithm terminates.

Question 4:

a) Outline the model assumptions used in the Gaussian Mixed Models (GMMs). How can a

GMM be fit?

b) Consider a one-dimensional Gaussian Mixture Model with 2 clusters and parameters(
µ1, σ

2
1, µ2, σ

2
2, π1, π2

)
. Here (π1, π2) are the mixing weights, and

(
µ1, σ

2
1

)
,
(
µ2, σ

2
2

)
are the

centers and variances of the clusters. We are given a dataset D = {x1, x2, x3} ⊂ R, and
apply the EM-algorithm to find the parameters of the Gaussian mixture model. What is

the complete log-likelihood that is being optimized for this problem?

c) Assume that the dataset D consists of the following three points, x1 = 1, x2 = 10, x3 = 20.

At some step in the EM-algorithm, we compute the expectation step which results in the

following matrix: T =


1 0

0.4 0.6

0 1

, where τij denotes the probability of xi belonging to

cluster j.

Given the above T for the expectation step, write the result of the following maximization

step, specifically the

• mixing weights π1, π2

• centers µ1, µ2

• variance values σ2
1, σ

2
2

Solution:

a) • Observations: x1, . . . ,xn with xi ∈ Rm.

• Unknown group membership r1, . . . , rn

• For a given group membership, xi is normally distributed:

– xi|r ∼ N (µr, Σr), r ∈ {1, . . . , k}
– fr(xi) = f(xi|r) = f(xi|µr, Σr)

• Prior probability of group membership:

p(r), r ∈ {1, . . . , k}

• Assumption of mixture distribution:

f(x) =
k∑

r=1

p(r)f(x|r)
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• Posteriori-probability of group membership:

p̂(r|xi) =
p̂(r)f̂(xi|r)

f̂(xi)
=: p̂ir (1)

• Group assignment via marginal, estimated Posteriori-probability:

Cr = {xi|p̂ir ≥ p̂is, r ̸= s}, r ∈ {1, . . . , k}

• Parameter estimation via EM algorithm, iterated until convergence:

(1) E-step:

∗ Given p̂(r), f̂(x|r), f̂(x)
∗ Calculate p̂ir according to (1)

(2) M-step:

∗ Given p̂ir, update p̂(r) = 1
n

n∑
i=1

p̂ir

∗ (µ̂r, Σ̂r) = arg max
µr,Σr

n∑
i=1

p̂ir · log (fr(xi|µr, Σr)) , r ∈ {1, . . . , g} (weighted

MLE)

b) The complete log-likelihood is given by

log f
(
D |

(
µ1, σ

2
1, µ2, σ

2
2, π1, π2

))
= log {π1ϕ (x1;µ1, σ1) + π2ϕ (x1;µ2, σ2)}+

log {π1ϕ (x2;µ1, σ1)+ π2ϕ (x2;µ2, σ2)}+

log {π1ϕ (x3;µ1, σ1) + π2ϕ (x3;µ2, σ2)}

where ϕ denotes the density of the one-dimensional normal distribution.

c) For the mixing weights, it holds that

πj =
1

n

n∑
i=1

τij ,

so we get

π1 =
1

3
(1 + 0.4 + 0) = 1.4/3 ≈ 0.47

π2 =
1

3
(0 + 0.6 + 1) = 1.6/3 ≈ 0.53 .

For the centers, it holds that

µj =

∑n
i=1 τijxi∑n
i=1 τij

,

so we get

µ1 =
1

1.4
(1 · 1 + 0.4 · 10 + 0 · 20) = 5/1.4 ≈ 3.57

µ2 =
1

1.6
(0 · 1 + 0.6 · 10 + 1 · 20) = 26/1.6 ≈ 16.25 .

For the variance values, it holds that

σ2
j =

∑n
i=1 τij (xi − µj) (xi − µj)

T∑n
i=1 τij

b/c one-dimensional
=

∑n
i=1 τij (xi − µj)

2∑n
i=1 τij

,

so we get

σ2
1 =

1

1.4

(
1 ·
(
1− 5

1.4

)2

+ 0.4 ·
(
10− 5

1.4

)2

+ 0 ·
(
20− 5

1.4

)2
)

≈ 16.53

σ2
2 =

1

1.6

(
0 ·
(
1− 26

1.6

)2

+ 0.6 ·
(
10− 26

1.6

)2

+ 1 ·
(
20− 26

1.6

)2
)

≈ 23.44 .

8


