Multivariate Verfahren — Summer Semester 2024 Exercise sheet 4
Hannah Schulz-Kiimpel June 20th 2024

Unsupervised Learning: Clustering

Question 1:

In the plot below, which of the following options could have produced each clustering (multi-
ple answers are possible): K-means, Single linkage (hierarchical clustering), Gaussian Mizture

Models.
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Solution:
Plot A: K-means, Single linkage & Gaussian Mixture Models

Plot B: Gaussian Mixture Models
Plot C: Single linkage & Gaussian Mixture Models
Plot D: Single linkage

Question 2: Hierarchical Clustering

For four branches of a supermarket chain, the following values are obtained for the characteristics

turnover and sales area, each measured in suitable units:

branch 1 2 3 4
turnover 8 5 10 4
sales area 24 22 25 21




Using the squared Euclidean distance as the distance between individual objects both times,
a) Perform a hierarchical clustering with the Single Linkage method
b) Perform a hierarchical clustering with the Zentroid method.

c) Draw the complete dendrograms for both methods.

Recap - Hierarchical Clustering:

e Given: n points z1,..., Ty,
e Clustering: Forming suitable clusters / classes / groups
e Two possible approaches:
- agglomerative: subclasses are successively combined
- divisive: Start with all objects in 1 cluster, which is successively split up

e Agglomerative procedure: In the first step, all objects form their own cluster. Combine

clusters based on distance dimensions until all objects are combined in one cluster.
e dij = d(x;, x;)= distance between points i an j
e D(C;, C;j)= Distance between clusters C; and Cj.
e (Y is defined as the partition in the v-th step.

e h,= Distance between the two clusters merged in step v (to be entered in the dendrogram).

Solution:
a) Single-Linkage with squared euclidean distance d;; = ||z; — z;||*: In step v, we merge

those clusters C;, Cj € C =1 for which the following applies:

D(Ci, Cj) = (hy =) b DA, €)= mg {reéff?eck{d”}}

(1) Distance-matrix of partition C(¥) = {{1},{2}, {3}, {4} }:
s\ (s\ [ _1l/3\|[
24 22/ ||\2

1 2 3 4
1] 0 13 5 25
20 3 () = m-m{ i . =220 4
3| 0 52

4 0
= Step 1: Merge {2} and {4}

e.g.. dig = =32+22=13




D = {{1},{2,4}, {3}}

(2) Distance-matrix of partition C():

1 2,4 3
1 1o 13 @ = hy= min{ min {dm}} =5=D({1},{3})
2,4 | 0 34 I#k | reC, seCy
3|
= Step 2: Merge {1} and {3}
= {{1,3},{2,4}}
(3) Distance between {1,3} and {2,4}:
hs = - 3} se{z 4}{drs} = 13=D({1,3},{2,4})
= Step 3: Merge {1,3} and {2,4}
3 ={{1,2,3,4}}
b) Zentroid-procedure with squared euclidean distance: In step v, we merge those clusters

CirC e =1 for which the following applies:

1
D(C;, ;) = (hy, =) min D(C}, Ci,) = min ||7; — Zx|[*, where Z, = — 53
1k I£k r 52
(1) Distance-matrix of partition C(© = {{1},{2}, {3}, {4}}:

1 2 3 4

1] 0 13 5 25
— min || — |2 = 22

2/ 0 34 (2) = m=minlln -l =22D({2}, {4))
3 | 0 52
4 | 0

= Step 1: Merge {2} and {4}
V= {{1},{2,4}, {31}

Cluster centroids:
) L(5Y, (¢ 4,5
T = = =
2472 22 21 21,5

g _ (8 45 10
24 21,5 25

{1} {24} {3}

[

(2) Distance-matrix of partition c:

e.g. D({1},{2,4}) = (;4) - (21 )

—3,52+2,52 =18,5

1 2,4 3
1 0 18,5
| @ = hy= mlnl\wz—mkll2—5 D({1},{3})
2.4 | 0 42,5
3| 0



= Step 2: Merge {1} and {3}
= C? = {{1,3},{2,4}}

Cluster centroids:

g 9 45
24,5 21,5

{1,3} {2,4}

(3) Distance between {1,3} and {2,4}:
hs = ||Zp1,3) — Toayl|? = 4,57 + 3% = 29,25=D({1, 3},{2,4})
= Step 3: Merge {1,3} and {2,4}
=CO = {{1,2,3,4}}
c) The dendograms resulting from Single-Linkage and Zentroid procedures, respectively,

are given by the following:

Clustering mittels Single-Linkage—Verfahren (Dendrogramm) Clustering mittels Zentroid—Verfahren (Dendrogramm)
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Question 3:

a) For a set of points (z;)}; in R™, show that the arithmetic mean g = 2 3% | 2; is the

solution to the optimization problem

n
fi = argmin > ||z; — p®
RER™ oy

Le. for a set of points, their mean can be characterized as the point which is, on average,

closest to all the other points with respect to the squared euclidean distance.



b) Consider the following six points in R?:

(o (o (e () ()

Use Lloyd’s algorithm and “random” initialization {x1;z¢} to perform both k-means and

k-medoids (also with squared euclidean distance) clustering for K = 2.

Solution:

a) This immediately follows from the lecture slide’s lemma in the subsection “Non-

probabilistic methods” of chapter 7.1, whereby
n n
Sl =22 Y i — AP vz e R
i=1 i=1

in this setting.
b) For both k-means and k-medoids, we start by computing the squared euclidean distance

between all points:

Tl T2 X3 T4 Tz g
x| 0 1 5 4 9 17
z2 | 1 0 2 5 10 20
x3 | O 0 12 20 34
zq | 4 5 12 0 1 5
rzs | 9 10 20 1 0 2
x¢ | 17 20 34 5 2 0

This also gives us the following distances between the initialization points and all others:

‘ 1 T2 X3 T4 I Tg
0 1 5 4 9 17
17 20 34 5 2 O

H1 =21

H2 = Te

e Then, for k-means:

Iteration 1: Looking at rows of the distance matrix corresponding to the centers
‘ T1 T2 T3 T4 X5 Te
W = 0 1 5 4 9 17

pwe=xg | 17 20 34 5) 2 0
Then the partitions are P; = {x1,z2,23,24} and P» = {x5,26}. To find the new

cluster centers, we have to compute the means:

i-m 210+ () () +6) -i0)
im0+ () -3(0)



Iteration 2: We compute the squared euclidean distances to the new cluster cen-

ters:
‘ 1 T9 T3 T4 x5 Ze
1 0.625 0.125 3.125 3.625 8.125 17.125
we | 12.500 14.500 26.500 2.500 0.500 0.500

Then the partitions are P; = {x1,z2,23} and Py = {z4,x5,26}. To find the new

cluster centers, we have to compute the means:
1 1 0 0 -1 1/-1
p L _ = -
=t % =5 () () () -5(5)
xzeP;
1 1 2 3 4 1/9
p _ =
=t 2= () () (5) -5(5)
zEP>

Iteration 3: We compute the squared euclidean distances to the new cluster cen-

ters:
‘ T ) xs X4 T T6
py | 1111 0.111 1.444 6.444 12.111 22.777
pe | 9.111  10.777 21.444 1.111 0.111 1.444

Then the partitions are Py = {x1,z9,z3} and Py = {4, 25, 26}. As these are the

same as in the previous iteration, the algorithm terminates.

and for k-medoids:
Iteration 1: The partitions are P, = {1,292, 23,24} and P» = {x5,2¢}. To find
the new cluster centers, we sum the rows of the following sub-matrices of squared

euclidean distances:

T1 Ty T3 T4 | X
2| 0 1 5 4|10 |25 25 =
2| 1 0 8 and 5| 0 2 2
xs | 5 2 0 12|19 x6| 2 0 2
xg | 4 5 12 0] 21
From this, we get that ,ugl) = x9 and uél) =x5 oOr uél) = xg — we choose the
former, i.e. ,ugl) = T5.

Iteration 2: Looking at rows of the distance matrix corresponding to the centers
‘ r1 T2 T3 T4 Ty X6
w=z2| 1 0 2 5 10 20
=z | 9 10 20 1 0 2

Then the partitions are P, = {1, 22,23} and P, = {x4,x5,2¢}. To find the new

cluster centers, we sum the rows of the corresponding subtables:



r1 T2 I3 D T4 5 Tg )
1| 0 1 5|6 . x| 0 1 5|6 )
= X2 (o = 45
T9 1 0 2|3 5 1 0 2|3
r3| 9 2 0|7 xs | 9 2 0|7

The cluster centers are the same as before, so the algorithm terminates.

Question 4:

a)

b)

Outline the model assumptions used in the Gaussian Mixed Models (GMMs). How can a
GMM be fit?

Consider a one-dimensional Gaussian Mixture Model with 2 clusters and parameters
(ul, 02, g, 03,71, 772). Here (71, m2) are the mixing weights, and (,ul, a%) , (,ug, a%) are the
centers and variances of the clusters. We are given a dataset D = {x1,x2,23} C R, and
apply the EM-algorithm to find the parameters of the Gaussian mixture model. What is
the complete log-likelihood that is being optimized for this problem?

Assume that the dataset D consists of the following three points, 1 = 1, 29 = 10, 23 = 20.

At some step in the EM-algorithm, we compute the expectation step which results in the
1 0

following matrix: T = | 0.4 0.6 |, where 7;; denotes the probability of x; belonging to

0 1
cluster j.

Given the above T for the expectation step, write the result of the following maximization

step, specifically the
e mixing weights w1, ma
e centers 1, Uo

e variance values o2, o3

Solution:

a)

e Observations: x1,...,x, with x; € R™.

e Unknown group membership r1,...,7,

e For a given group membership, «; is normally distributed:
— x|t ~ N(pr, 3p), r€{1,....k}
= fr(@i) = f(@ilr) = f(xilpr, Er)

Prior probability of group membership:

p(r), me{l,..., k}

Assumption of mixture distribution:



e Posteriori-probability of group membership:

iy 2@ 1
p(r|x;) f(a:z) Dir (1)

e Group assignment via marginal, estimated Posteriori-probability:

Cr = {xi|pir > Pis, 7 # s}, r €{1,...,k}
e Parameter estimation via EM algorithm, iterated until convergence:
(1) E-step:
« Given p(r), f(z|r), f(z)
x Calculate p;, according to
(2) M-step:

n
« Given p;,, update p(r) = % > Dir
i=1

* (fur, Xp) = arg Iﬁnag: Zilﬁir log (fr(zi|pr, 7)), 7 € {1,...,g} (weighted
MLE)
b) The complete log-likelihood is given by
log f (D | (1,07, pa, 03, m1,m2)) =log {m (z1; 1, 01) + m2¢ (1; 2, 02) } +
log {m1¢ (w2; 1, 01) + 72 (w25 2, 02) } +
log {m1¢ (x3; 1, 01) + m2¢ (235 p2, 02) }

where ¢ denotes the density of the one-dimensional normal distribution.

c) For the mixing weights, it holds that

n
1
T = E E Tij »
=1
so we get

1
m = 3(1+04+0) =1.4/3 ~ 047

1
Ty = §(0 +06+1)=1.6/3~0.53.
For the centers, it holds that

1y = izt T
DY T
so we get
1
g = 14(1.1_‘_0.4.104_0.20):5/1.4%3.57
1
g = ﬁ(0.1_,_().6.10-1-1-20) =26/1.6 ~ 16.25.

For the variance values, it holds that

o _ 2i Tig (@i — p5) (@i — )" b/c one-dimensional 3oy 7ij (w0 — p15)?

4 > e Tij > e Tij ’




