
Multivariate Verfahren – Summer Semester 2024 Exercise sheet 5

Hannah Schulz-Kümpel 02.07.2024

Principal Component Analysis

Question 1: PCA by hand

Consider a data matrix given by

X =


24 22 24

24 21 25

24 22 20

24 23 21

 .

a) Derive the principal components via eigen decomposition of the sample covariance matrix.

b) Let us assume that we want to reduce the data’s dimension to k = 2. Calculate the new

data points in R2.

Solution:

a) 1. Compute the sample covariance matrix:

Recall from the lecture, that the following holds for the sample covariance matrix:

S =
1

n− 1
X⊤

CXC =
1

n− 1

n∑
i=1

(xi − x̄) (xi − x̄)⊤ .

In this case, we have

x̄ =



1

4

(
24 + 24 + 24 + 24

)
1

4

(
22 + 21 + 22 + 23

)
1

4

(
24 + 25 + 20 + 21

)

 = (24, 22, 22.5)⊤ .
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It follows that

S =
1

3

(
(24− 24)

(22− 22)

(24− 22.5)

((24− 24), (22− 22), (24− 22.5)
)
+


(24− 24)

(21− 22)

(25− 22.5)

((24− 24), (21− 22), (25− 22.5)
)
+


(24− 24)

(22− 22)

(20− 22.5)

((24− 24), (22− 22), (20− 22.5)
)
+


(24− 24)

(23− 22)

(21− 22.5)

((24− 24), (23− 22), (21− 22.5)
))

=
1

3

(
0 0 0

0 0 0

0 0 2.25

+


0 0 0

0 1 −2.50

0 −2.5 6.25

+


0 0 0

0 0 0

0 0 6.25

+


0 0 0

0 1 −1.50

0 −1.5 2.25


)

=
1

3


0 0 0

0 2 −4

0 −4 17

 .

2. Perform an eigen decomposition of S:

First, we need to compute the eigenvalues via the characteristic polynom

det(S − λI3)
!
= 0 .

⇒

∣∣∣∣∣∣∣∣∣
−λ 0 0

0
(2
3
− λ

)
−4

3

0 −4

3

(17
3

− λ
)
∣∣∣∣∣∣∣∣∣ = (−λ)

(
−λ+

2

3

)(
−λ+

17

3

)
−
(
−λ · −4

3
· −4

3

)

= −λ3 +
19

3
λ2 − 34

9
λ−

(
−16

9
λ

)
=

= −λ3 +
19

3
λ2 − 2λ

!
= 0 .

⇒ λ1 = 6, λ2 =
1
3 , λ3 = 0 .

Eigenvector corresponding to λ1
−6x1 0 0

0 −16
3 x2 −4

3x3

0 −4
3x2 −1

3x3

 !
= 0 ⇔ v1 =


0

−1
4

1

 .

v1 needs to be normalized: v1 = (0.0000000, −0.2425356, 0.9701425)⊤
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Eigenvector corresponding to λ2
−1

3x1 0 0

0 −1
3x2 −4

3x3

0 −4
3x2 −16

3 x3

 !
= 0 ⇔ v2 =


0

4

1

 .

v2 needs to be normalized: v2 = (0.0000000, 0.9701425, 0.2425356)⊤

Eigenvector corresponding to λ3
0 0 0

0 2
3x2 −4

3x3

0 −4
3x2

17
3 x3

 !
= 0 ⇔ v3 =


1

0

0

 .

v3 does not need to be normalized.

Finally, the eigen decomposition of S is given by

S =
(
v1, v2, v3

)
6 0 0

0 1
3 0

0 0 0



v⊤
1

v⊤
2

v⊤
3


and the PCs are a1 = v1, a2 = v2, and a3 = v3.

b) To use the PCs for dimension reduction, we multiply the original data with the matrix

of the first k columns of eigenvectors.

In our case, k = 2, so we achieve dimension reduction via

X
(
v1,v2

)
=


24 22 24

24 21 25

24 22 20

24 23 21




0 0

−0.2425356 0.9701425

0.9701425 0.2425356

 =


17.94764 27.16399

19.16031 26.43638

14.06707 26.19385

14.79467 27.40653

 .

Question 2: Invariance of PCA w.r.t. transform

Given a PCA of a data matrix X ∈ Rn×m, consider the matrix of scores

Y =


y11 . . . . . . yn1
...

...
...

...

y1m . . . . . . ynm

 = [y1, . . . ,yn]
⊤ ∈ Rm×n ,

where each columns gives the coordinates yi of observation i, i = 1, . . . , n, in the m-dimensional

space with the principal component (vectors) as axes.

a) Show that the sample covariance of Y is equal to Λord, i.e. the diagonal matrix of ordered

eigenvalues of either the sample covariance matrix S.

b) In the lecture, we have learned that PCA is not scale-invariant when we solve the optimi-

zation problem a⊤
p Sap → max, only when we solve a⊤

p Rap → max.
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Can you reason why this is the case, using a diagonal matrix T ∈ Rm×m which transforms

the varible scales by replacing each observation xi with Txi?

c) Next, consider shifting each data point by a constant c ∈ R. Is PCA invariant w.r.t. a shift

of each data point by a constant?

d) Lastly, consider an orthogonal matrix A ∈ Rm×m. How does PCA behave w.r.t. orthogonal

transformation, i.e. w.r.t. replacement of each observation xi with Axi?

Solution:

a) Let S ∈ Rm×m again denote the sample covariance matrix for the following.

We recall that

1. For V denoting the matrix whose columns are the eigenvectors of S, ordered in

descending order according to the corresponding eigenvalues and XC denoting the

centered data matrix, we have

– S = V ΛordV
⊤ and

– XC = UΣV ⊤.

2. For ap denoting the pth PC (i.e. pth column of V ), p = 1, . . . ,m, the pth entry of

yi is given by

yip = a⊤
p (xi − x̄), i = 1, . . . , n

⇔ yi = (yi1, yi2, . . . , yim)⊤ = V⊤(xi − x̄), i = 1, . . . , n.

It immediately follows that the sample covariance matrix of Y is given by

1

n− 1

n∑
i=1

yiy
⊤
i =

1

n− 1

∑
V ⊤(xi − x̄)(xi − x̄)⊤V

= V ⊤SV

= V ⊤V ΛordV
⊤V substituting the eigen decomposition for S

= Λord .

b) Just as in the first exercise, that the following holds for the sample covariance matrix:

S =
1

n− 1
X⊤

CXC =
1

n− 1

n∑
i=1

(xi − x̄) (xi − x̄)⊤ .

Now, if we change the scale of a data matrix X ∈ Rn×n by replacing each observation

xi with Txi, the new data’s arithmetic mean is given by 1
n

∑n
i=1 Txi = T x̄ and the new

data’s sample covariance matrix by

1

n− 1

n∑
i=1

(Txi − T x̄) (Txi − T x̄)⊤

=
1

n− 1

n∑
i=1

T (xi − x̄) (xi − x̄)⊤ T⊤

= TST⊤ =
because T is diagonal

TST .
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Clearly, the eigenvalues and eigenvectors of TST will not be identical to those of S

unless all diagonal entries are equal to 1.

⇒ This is what is meant by ”PCA is not scale-invariant”.

However, since the sample correlation has standardized entries, this is not an issue when

considering R instead of S.

c) PCA is invariant w.r.t. shifting by a constant, even when using the sample

covariance matrix S.

This holds because, each point of the shifted data is given by xi+c, the arithmetic mean

by x̄+ c, and the shifted data’s sample covariance matrix by

1

n− 1

n∑
i=1

(
(xi + c)− (x̄+ c)

)(
(xi + c)− (x̄+ c)

)⊤
=

1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)⊤

=S.

Clearly, it immediately follows that we get the same score vectors.

This is also easily shown:

yi = V⊤(xi + c− (x̄+ c)) = V⊤(xi − x̄) ∀l ∈ {1, . . . , n} .

d) Equivalently to subtask a), the sample covariance matrix of the orthogonally transformed

data, i.e. data with new observations Axi, is given by

1

n− 1

n∑
i=1

(Axi −Ax̄) (Axi −Ax̄)⊤

=
1

n− 1

n∑
i=1

A (xi − x̄) (xi − x̄)⊤A⊤

= ASA⊤ .

Thereby, PCA is definitely not invariant w.r.t. orthogonal transformation.

However, the following also holds for the above sample covariance matrix:

ASA⊤ = AVΛV⊤A⊤ = BΛB⊤ ,

for B := AV . Since B is also orthogonal by definition, it follows that the eigenvalues of

the sample covariance matrix are not changed by the orthogonal transformation!

For this reason, PCA is sometimes called equivariant with respect to orthogonal transfor-

mations.

Question 3: Interpreting PCA output in R
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There are two main ways to perform PCA in R:

• the princomp() function - based on eigen decomposition and

• the prcomp() function - based on singular value decomposition (SVD).

According to the R help, prcomp() via SVD has slightly better numerical accuracy. Here you

can use the option scale=TRUE to perform standardized PCA, i.e. the version that iteratively

solves a⊤
p Rap → max.

For visualization of PCA results, the factoextra package is very popular; except for biplots,

for which the ggfortify package is standard.

a) Perform PCA on the iris data set excluding the variable Species and interpret the

output.

b) Plot the scree plot and select the number of PCs that should be selected for dimension

reduction according to each of the criteria on lecture-slide 67.

c) Plot the Biplot and interpret it.

Solution:

a) See R code.

The output is

Standard deviations (1, .., p=4):

[1] 1.7083611 0.9560494 0.3830886 0.1439265

Rotation (n x k) = (4 x 4):

PC1 PC2 PC3 PC4

Sepal.Length 0.5210659 -0.37741762 0.7195664 0.2612863

Sepal.Width -0.2693474 -0.92329566 -0.2443818 -0.1235096

Petal.Length 0.5804131 -0.02449161 -0.1421264 -0.8014492

Petal.Width 0.5648565 -0.06694199 -0.6342727 0.5235971

Interpretation:

– The standard deviations are the standard deviations of the principal components,

which are equal to the square roots of the eigenvalues of the covariance/correlation

matrix.

– The Rotation columns are equal to the principal component (vectors).

Meanwhile, the Rotation rows correspond to the loadings of each variable.

b) See R code.
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– Kaiser criterion: Principal components with eigenvalue greater than 1.

(I.e. the maximal k s.t. λk > 1) – The choice would be 1.

– All principal components needed to get a total of 80% of the variance. (I.e. the

minimal k s.t. tr(Λord)
−1 ·

∑k
i=1 λk ≥ 0.8) – The choice would again be 2.

– Scree Plot: Consider a graphical representation of the eigenvalues. Use as many

principal components up to the bend of the graph (elbow).

– Here, we might decide to go with 3.

– Simply choose k so that it is convenient (e.g. for a planned visualization).

– For visualization, one would often choose 2.

c) See R code.

The Biplot overlays scoreplots, i.e. dots with coordinates given by the first k entries

of the score vectors yi, i = 1, . . . , n, with loading plots, i.e. arrows that point towards

the coordinates given by the first k entries of the columns of the Rotation matrix from

subtask a).

In the plot below, we can observe a few things:

– The data may vaguely be divided into two clusters on the first component.

– Since the loadings for Petal.Length and Petal.Width mostly contribute to the

variability along PC1.

– Petal.Length and Petal.Width are highly positively correlated with each other,

but both negatively correlated with Sepal.Width.
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